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Abstract
The entanglement probabilities for a highly flexible polymer to wind n times
around a straight polymer are evaluated using white noise analysis. To introduce
the white noise functional approach, the one-dimensional random walk problem
is taken as an example. The polymer entanglement scenario, viewed as a
random walk on a plane, is then treated and the entanglement probabilities are
obtained for a magnetic flux confined along the straight polymer, and a case
where an entangled polymer is subjected to the potential V = ḟ (s)ϑ . In the
absence of the magnetic flux and the potential V , the entanglement probabilities
reduce to a result obtained by Wiegel.

PACS numbers: 82.35.Lr, 02.03.−f, 05.40.Fb

1. Introduction

Recently, white noise analysis was applied to evaluate the Feynman path integral for quantum
systems with flat wall boundaries and topological constraints [1]. These include the infinite
wall problem, the particle in a box, and topologically constrained systems exemplified by
the quantum particle in a circle and the Aharonov–Bohm set-up. In this paper, we extend
this white noise functional integral approach to statistical mechanics by treating entangled
polymer systems. In 1967, Edwards [2] and, independently, Prager and Frisch [3], solved
the entanglement problem of two chainlike macromolecules in the absence of intermolecular
forces. The problem consists of a polymer on a plane whose motion is constrained by a
straight polymer orthogonal to the plane, since the macromolecules cannot cross each other.
The polymer on the plane has fixed endpoints and can be viewed as a random walk with
paths that can entangle n times around the straight polymer which intersects the origin of the
plane. Interesting quantities based on this entangled polymer were also investigated by Saito
and Chen [4]. On the other hand, Wiegel [5] extended this entanglement problem to include
an intermolecular force where the repeating units of the entangled polymer interact with the
straight polymer. The force is repulsive at short distances and attractive at large distances
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with the potential, V = Cr2 + D/r2 (C > 0,D > 0). Wiegel then obtained the entanglement
probabilities for this harmonically bound polymer to be

W(n) = (R/l)
√

4π/N exp(−4π2n2R2/Nl2) (N � 1) (1.1)

where R = (D/C)1/4, is the radius where the potential has a minimum, and the polymer is
represented by N freely hinged rods, each of length l. For low temperatures, Wiegel also noted
that the configurations of the polymer are confined to a narrow strip in the immediate vicinity
of a circle around the origin with radius R. The result, equation (1.1), is also a low-temperature
limit of entanglement probabilities for any potential V (r) which has a minimum at some
radius R.

We apply white noise analysis [6–9] in this paper by evaluating the entanglement
probabilities for two other scenarios. The first, discussed in section 3, considers the case
where the straight polymer perpendicular to the plane possesses a magnetic flux confined along
its length. This appears to be a classical analogue of the Aharonov–Bohm effect [10] since
the entanglement probability is affected by the confined magnetic flux, even if the entangled
polymer lies in a region with zero magnetic field. We discuss the second case in section 4
where the entangled polymer on the plane is subjected to the potential, V = ḟ (s)ϑ . Here,
ḟ (s) = df/ds, where 0 � s � L and L is the length of the polymer. As a specific example,
we take V = kϑ which appears to stretch the polymer and diminishes the probability for an
entangled polymer with a high winding number n. This stretching potential may provide some
insights into the still unsolved problem of protein folding and unfolding. In the following
section, we present the application of white noise calculus to the one-dimensional random
walk. This is followed by the entangled polymer viewed as a two-dimensional random walk
on a plane in section 3.

2. Probability function and white noise analysis

To illustrate the use of white noise calculus [6–9] in evaluating the probability function,
we consider here the one-dimensional random walk problem. We begin with the Wiener
representation of the random walk along the x-axis which starts at x0 and ends at x1 given by

P(x1, x0; L) =
∫

exp

[
− 1

2l

∫ L

0

(
dx

ds

)2

ds

]
D[x]. (2.1)

In this probability function, each step is denoted by l and the total number of steps N is such
that Nl = L. The probability function equation (2.1) can be cast in the language of white
noise [9] by parametrizing the paths as

x(L) = x0 +
√

2lB(L)

= x0 +
√

2l

∫ L

0
ω(s)ds (2.2)

where B(s) is a Brownian motion parametrized by s, 0 � s � L, and ω = dB/ds is the
corresponding white noise variable. With equation (2.2), the exponential in equation (2.1)
becomes

exp

[
− 1

2l

∫ L

0

(
dx

ds

)2

ds

]
= exp

[
−

∫ L

0
ω(s)2 ds

]
(2.3)
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where (dx/ds) = √
2lω. Since the integrand in equation (2.1) is now expressed as a white

noise functional, the integral over the paths D[x] becomes an integral over the Gaussian white
noise measure dµ(ω). We note, however, that

dµ(ω) = Nω exp

[
−1

2

∫ L

0
ω(s)2 ds

]
d∞ω (2.4)

where Nω is a normalization factor and the exponential is responsible for the Gaussian fall-off.
More appropriately,D[x] (whereD[x] = d∞x, in the context of path integrals [12]) is replaced
by, Nω d∞ω = exp

[
1
2

∫
ω(s)2 ds

]
dµ(ω). Multiplying the exponential with dµ(ω), we are led

to a modification of equation (2.3) and shall, therefore, consider the white noise functional,

I0 = N exp

(
−

∫ L

0
ω(s)2 ds

)
exp

(
1

2

∫ L

0
ω(s)2 ds

)

= N exp

(
−1

2

∫ L

0
ω(s)2 ds

)
(2.5)

where N is an appropriate normalization factor. To incorporate the endpoint x1, we use the
Donsker delta function [6, 13] δ(x(L) − x1), to pin down the paths x(s), where x(L) is given
by equation (2.2). This, together with the white noise functional (2.5), enables us to write the
probability function, equation (2.1), as

P(x1, x0; L) = N

∫
exp

(
−1

2

∫ L

0
ω(s)2 ds

)
δ

(
x0 +

√
2l

∫ L

0
ω(s) ds − x1

)
dµ(ω). (2.6)

To evaluate equation (2.6), we may use the Fourier representation of the δ-function, i.e.,

P(x1, x0; L) = 1

2π

∫ +∞

−∞
dλ exp[iλ(x0 − x1)]

× N

∫
exp

(
iλ

√
2l

∫ L

0
ω(s) ds

)
exp

(
−1

2

∫ L

0
ω(s)2 ds

)
dµ(ω). (2.7)

The integration over dµ(ω) can be done by noting that, from white noise calculus [6–9], the
T-transform of I0, equation (2.5), is given by

T I0(ξ) =
∫

exp

(
i
∫

ωξ ds

)
I0(ω) dµ(ω)

= exp

(
−1

4

∫ L

0
ξ2 ds

)
(2.8)

where the normalization is taken as N−1 = ∫
exp

[− 1
2

∫
ω(s)2 ds

]
dµ(ω). If we let ξ = λ

√
2l

in equation (2.7), then the integration over dµ(ω) is just TI0(ξ), equation (2.8). The probability
function, equation (2.7), therefore becomes

P(x1, x0; L) = 1

2π

∫ +∞

−∞
exp[−(lL/2)λ2 + i(x0 − x1)λ] dλ. (2.9)

What remains is a Gaussian integral over λ, and we obtain the result for a one-dimensional
random walk starting from x0 and ending at x1 [14],

P(x1, x0; L) =
√

1/2πNl2 exp[−(1/2Nl2)(x0 − x1)
2] (2.10)

where Nl = L. In the following sections, we apply this white noise functional approach to
evaluate the entanglement probabilities of polymers.
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3. Entangled polymers

Let us consider two polymers, where one entangles around the other. We can take the first
polymer to lie on a plane with endpoints at r0 and r1, and the second polymer modelled by
a straight line perpendicular to the plane and intersecting the origin. The various ways in
which the polymer on the plane entangles around the second polymer, whether clockwise or
anticlockwise, give rise to an interesting problem with topological constraints [2]. We can
view the different possible configurations of the polymer on the plane as the paths of a random
walk starting at r0 and ending at r1 in the presence of a singularity at the origin where the
second polymer is located. Employing the polar coordinates r = (r, ϑ) for this problem,
Edwards [2] used the Wiener representation of the random walk in which the probability is
represented by

P(r1, r0) =
∫

exp

[
−1

l

∫ L

0
(dr/ds)2 ds

]
D2[r] (3.1)

where the integral is taken over all paths r(s) such that r(0) = r0 and r(L) = r1. Here,
we represent the polymer as consisting of N freely hinged individual molecules, each of
length l such that L = Nl. In view of the point singularity, a set of topologically equivalent
configurations can be characterized by a winding number n, where n = 0,±1,±2, . . . ,

indicating the number of times the polymer turns around the singular point at the origin
(n � 0 signifies n turns anticlockwise and n � −1 means |n + 1| turns clockwise). Since
we are interested in the number of possible windings around the origin that the polymer on
the plane undergoes, we can simplify the calculation by fixing the radial variable to r = R,
i.e., r = (R, ϑ), and use ϑ to track the number of turns, clockwise or anticlockwise, around
the origin. We note that a fixed radial part describes the entanglement scenario in the low-
temperature limit [5] for any polymer interaction potential V (r) which has a minimum at some
value r = R. In this case, equation (3.1) reduces to

P(ϑ1, ϑ0) =
∫

exp

[
−1

l

∫ L

0
R2

(
dϑ

ds

)2

ds

]
D[R dϑ] (3.2)

where ϑ1 = ϑ(L) and ϑ0 = ϑ(0).
The integrand can be written as a white noise functional by parametrizing the variable ϑ

as

ϑ(L) = ϑ0 + (
√

l/R)B(L)

= ϑ0 + (
√

l/R)

∫ L

0
ω(s) ds (3.3)

where ω = dB/ds and ω(s) is a Gaussian random white noise variable with B(s) being a
Brownian motion parametrized by s. Noting that dϑ/ds = (

√
l/R)ω(s), the integrand in

equation (3.2) becomes

exp

[
−1

l

∫
R2

(
dϑ

ds

)2

ds

]
= exp

[
−

∫
ω(s)2 ds

]
. (3.4)

Having expressed the integrand as a white noise functional, the integration over D[R dϑ]
becomes an integral over the Gaussian white noise measure, or more appropriately (as seen in
the previous section) an integral over, Nω d∞ω = exp

[
1
2

∫
ω(s)2 ds

]
dµ(ω). The exponential

factor, together with the right-hand side of equation (3.4), yields the white noise functional
I0 given by equation (2.5). Since the initial point ϑ0 has been fixed by the parametrization
equation (3.3), we can fix the endpoint ϑ1 by using the Donsker delta function, δ(ϑ(L) − ϑ1),
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where ϑ(L) is given by equation (3.3). However, note that the polymer can wind n times
clockwise, or anticlockwise, around the origin, and to reflect these possibilities we use instead
δ(ϑ(L) − ϑ1 + 2πn), where n = 0,±1,±2, . . . . Hence I0, equation (2.5), together with this
delta function leads us to the white noise functional,

I =
+∞∑

n=−∞
I0δ(ϑ(L) − ϑ1 + 2πn)

=
+∞∑

n=−∞
N exp

(
−1

2

∫ L

0
ω(s)2 ds

)
δ

(
ϑ0 + (

√
l/R)

∫ L

0
ω(s) ds − ϑ1 + 2πn

)
. (3.5)

Integrating over the white noise measure dµ(ω), the probability function, equation (3.2), can
now be written as

P(ϑ1, ϑ0) =
∫ +∞∑

n=−∞
I0δ(ϑ(L) − ϑ1 + 2πn) dµ(ω). (3.6)

To evaluate this expression, we write the Fourier representation of the δ-function,

P(ϑ1, ϑ0) = 1

2π

+∞∑
n=−∞

∫
exp[iλ(ϑ0 − ϑ1 + 2πn)]

×
∫

exp

(
iλ(

√
l/R)

∫ L

0
ω(s) ds

)
I0 dµ(ω) dλ (3.7)

and note that the integration over dµ(ω) can be done using equation (2.8) with ξ = λ
√

l/R.
We obtain

P(ϑ1, ϑ0) = 1

2π

+∞∑
n=−∞

∫
exp[iλ(ϑ0 − ϑ1 + 2πn)] exp(−λ2lL/4R2) dλ

=
+∞∑

n=−∞
Pn. (3.8)

The Pn is the corresponding probability function for polymer configurations which entangle
n times around the origin. The sum of all the Pn gives the total probability function. The
remaining integral in Pn is a Gaussian integral over λ, i.e.,

Pn = 1

2π

∫
exp[iλ(ϑ0 − ϑ1 + 2πn) − λ2(lL/4R2)] dλ

=
√

R2/lLπ exp[−(R2/lL)(ϑ0 − ϑ1 + 2πn)2]. (3.9)

From equation (3.8) we may also use Poisson’s sum formula [15],

1

2π

+∞∑
n=−∞

exp(inφ) =
+∞∑

m=−∞
δ(φ + 2πm) (3.10)

to obtain

P(ϑ1, ϑ0) = 1

2π

+∞∑
m=−∞

∫
δ(λ + m) exp[iλ(ϑ0 − ϑ1) − λ2(lL/4R2)] dλ

= 1

2π

+∞∑
m=−∞

exp[−im(ϑ0 − ϑ1) − m2(lL/4R2)]. (3.11)
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For an entangled polymer with an arbitrary initial starting point we may set ϑ0 = ϑ1. From
equations (3.9) and (3.11), the probability that the polymer winds n times can be calculated as

W(n) = Pn/P (L)

=
√

R2/lLπ exp[−(2πnR)2/lL]
1

2π

∑+∞
m=−∞ exp[−m2(lL/4R2)]

. (3.12)

For a very long polymer, L = Nl � 1, the dominant term in the denominator is that for
m = 0, and hence,

W(n) ≈ (R/l)
√

4π/N exp(−4π2n2R2/Nl2). (3.13)

This result agrees with that obtained by Wiegel [5] for entangled polymers where an interaction
potential has a minimum at some value r = R.

4. Polymer with magnetic flux

Let us next consider the case where the straight polymer intersecting the origin of the plane
is endowed with a magnetic flux confined along its length. We represent this situation by
adding a potential, V = qA · ṙ, to the probability function, equation (3.1), which describes the
various configurations of the entangled polymer lying on the plane. Here, q is the net charge
of each repeating unit of the polymer, and A is the vector potential. Incorporating this in
equation (3.1), we have

P(r1, r0) =
∫

exp

[
−1

l

∫ L

0
[(dr/ds)2 + lqA · ṙ] ds

]
D2[r]. (4.1)

In particular, the vector potential A can be written as

A = (�0/2π)∇ϑ (r > R0) (4.2)

where R0 is the cross-sectional radius of the straight polymer at the origin and �0 = πR2
0B

is the non-vanishing magnetic flux along its length. Note that outside the straight polymer,
r > R0, the magnetic field is B = ∇ × A = 0, which is a situation analogous to the
Aharonov–Bohm set-up [10, 11]. With equation (4.2), the potential becomes qA · ṙ = �ϑ̇ ,
where � = q�0/2π , and equation (4.1) can be written as

P(r1, r0) =
∫

exp

[
−1

l

∫ L

0
[(dr/ds)2 + l�ϑ̇] ds

]
D2[r]. (4.3)

As in the previous section, if we simplify the calculation by constraining the radial part
to r = R > R0, equation (4.3) becomes

P(ϑ1, ϑ0) =
∫

exp

[
−1

l

∫ L

0

[
R2

(
dϑ

ds

)2

+ l�ϑ̇

]
ds

]
D[R dϑ]. (4.4)

Parametrizing the variable ϑ as in equation (3.3), the integrand of equation (4.4) can be
written as a white noise functional and the probability function acquires a form similar to
equation (3.6) modified by the potential, �ϑ̇ = �(

√
l/R)ω, i.e.,

P(ϑ1, ϑ0) =
∫ +∞∑

n=−∞
I0 exp

(
−�(

√
l/R)

∫ L

0
ω(s) ds

)

× δ

(
ϑ0 + (

√
l/R)

∫ L

0
ω(s) ds − ϑ1 + 2πn

)
dµ(ω). (4.5)
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To facilitate the integration over dµ(ω), we use the Fourier representation of the delta
function and write equation (4.5) as

P(ϑ1, ϑ0) = 1

2π

+∞∑
n=−∞

∫ +∞

−∞
exp[iλ(ϑ0 − ϑ1 + 2πn)]

×
∫

exp

[
i(
√

l/R)(λ + i�)

∫ L

0
ω(s) ds

]
I0 dµ(ω) dλ. (4.6)

If we let ξ = (
√

l/R)(λ + i�), the integration over dµ(ω) is just the T-transform of I0,
equation (2.8), and the probability function becomes

P(ϑ1, ϑ0)

+∞∑
n=−∞

1

2π

∫ +∞

−∞
exp[iλ(ϑ0 − ϑ1 + 2πn)] exp[−(lL/4R2)(λ + i�)2] dλ. (4.7)

The remaining integral is a Gaussian integral over λ and we may write equation (4.7) as

P(ϑ1, ϑ0) =
+∞∑

n=−∞
Pn (4.8)

where the probability for winding n times is given by

Pn =
√

R2/πlL exp{−(R2/lL)[ϑ0 − ϑ1 + 2πn − (lL�/2R2)]2} exp(lL�2/4R2). (4.9)

Alternatively, from equation (4.7), we may apply the Poisson sum formula,
equation (3.10), such that

P(ϑ1, ϑ0) =
+∞∑

m=−∞

1

2π

∫ +∞

−∞
δ(λ + m) exp[iλ(ϑ0 − ϑ1)] exp[−(lL/4R2)(λ + i�)2] dλ

(4.10)

and integrate λ with the help of the delta function to obtain

P(ϑ1, ϑ0) = 1

2π

+∞∑
m=−∞

exp[−im(ϑ0 − ϑ1 − (�lL/2R2))] exp[−(m2lL/4R2) + (lL�2/4R2)].

(4.11)

For the case when the flux � = 0, equation (4.11) reduces to equation (3.11).
The probability for the polymer to entangle n times is given by

W(n) = Pn/P (ϑ1, ϑ0)

=
√

R2/lLπ exp{−(R2/lL)[ϑ0 − ϑ1 + 2πn − (Ll�/2R2)]2}
1

2π

∑+∞
m=−∞ exp{−im[ϑ0 − ϑ1 − (�lL/2R2)] − m2(lL/4R2)} . (4.12)

For an arbitrary initial point we may set ϑ0 = ϑ1, and equation (4.12) may be written as

W(n) = R

l

√
4π

N

exp(−4π2n2R2/Nl2) exp[2πn� − (lL/4R2)�2]

θ3(�Nl2/4R2)
(4.13)

where θ3(u) is the theta function [16],

θ3(u) =
+∞∑

m=−∞
qm2

exp(2mui)

= 1 + 2
+∞∑
m=1

qm2
cos(2mu) (4.14)



4254 C C Bernido and M V Carpio-Bernido

with u = �Nl2/4R2 and q = exp(−Nl2/4R2). For a very long polymer, L = Nl � 1, the
θ3(u) in the denominator is approximately 1, and we obtain from equation (4.13)

W(n) ≈ (R/l)
√

4π/N exp{−(1/Nl2)[2πnR − (Nl2/2R)�]2}. (4.15)

Curiously, even if the magnetic flux � is confined along the straight polymer such that
B = 0 in the region where the entangled polymer lies on the plane, the entanglement probability
is still affected by the confined magnetic field. This is reminiscent of the Aharonov–Bohm
effect in quantum mechanics [10, 11] where the interference pattern of the electron in a two-slit
experiment is influenced by a magnetic field it never comes in contact with. Here, of course,
we are dealing with ‘classical’ entanglement probabilities of a polymer which lies in a region
where the force due to the confined magnetic field B is zero, and yet is still influenced by
it. When the magnetic flux vanishes, � = 0, the entanglement probability equation (4.15)
reduces to equation (3.13), or equation (1.1) obtained by Wiegel.

5. Polymer with a V = ḟ (s)ϑ potential

Let us next consider the case where the polymer on the plane is subjected to a potential
V = ḟ (s)ϑ , as it entangles around the second straight polymer perpendicular to the plane at
the origin. Here, ḟ = df/ds, and we introduce the potential by adding it to the ‘kinetic part’
of equation (3.2) such that

PV (ϑ1, ϑ0) =
∫

exp

{
−1

l

∫ L

0

[
R2

(
dϑ

ds

)2

+ lḟ (s)ϑ

]
ds

}
D[R dϑ]. (5.1)

We note that the potential part can also be written as∫ L

0

df

ds
ϑ ds =

∫ L

0

d

ds
(f ϑ) ds −

∫ L

0
f

(
dϑ

ds

)
ds

= f (L)ϑ(L) − f (0)ϑ(0) −
∫ L

0
f ϑ̇ ds (5.2)

where f (L), f (0), ϑ(L) and ϑ(0) are constants being values of the variables at the endpoints.
Equation (5.2) allows us to write equation (5.1) as

PV (ϑ1, ϑ0) = exp[f (0)ϑ(0) − f (L)ϑ(L)]

×
∫

exp

{
−1

l

∫ L

0

[
R2

(
dϑ

ds

)2

− lf ϑ̇

]
ds

}
D[R dϑ]. (5.3)

Parametrizing the variable ϑ as in equation (3.3), the integrand can be expressed as a
white noise functional and the probability function PV (ϑ1, ϑ0) for the entangled polymer
acquires the form of equation (3.6), but modified by the potential term (5.2) where we write
f ϑ̇ = f (

√
l/R)ω, i.e.,

PV (ϑ1, ϑ0) = exp[f (0)ϑ(0) − f (L)ϑ(L)]

×
∫ +∞∑

n=−∞
I0 exp

[
(
√

l/R)

∫ L

0
fω(s) ds

]
δ(ϑ(L) − ϑ1 + 2πn) dµ(ω). (5.4)

We again express the delta function in terms of its Fourier representation and obtain

PV (ϑ1, ϑ0) = exp[f (0)ϑ(0) − f (L)ϑ(L)]
1

2π

+∞∑
n=−∞

∫ +∞

−∞
exp[iλ(ϑ0 − ϑ1 + 2πn)]

×
∫

exp

{
i
∫ L

0
(
√

l/R)(λ − if )ω(s) ds

}
I0 dµ(ω) dλ. (5.5)
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If we let ξ = (
√

l/R)(λ − if ), the integration over dµ(ω) is just the T-transform of I0,
equation (2.8). This yields

PV (ϑ1, ϑ0) = exp[f (0)ϑ(0) − f (L)ϑ(L)]
1

2π

+∞∑
n=−∞

∫ +∞

−∞
exp[iλ(ϑ0 − ϑ1 + 2πn)]

× exp

{
−(l/4R2)

∫ L

0
(λ − if )2 ds

}
dλ

=
+∞∑

n=−∞
Pn (5.6)

where the Gaussian integral over λ in Pn can be evaluated to give

Pn =
√

R2

πlL
exp[f (0)ϑ(0) − f (L)ϑ(L)] exp

[(
l

4R2

∫ L

0
f 2 ds

)]

× exp

[
−R2

lL

(
ϑ0 − ϑ1 + 2πn +

l

2R2

∫ L

0
f ds

)2
]

. (5.7)

From equation (5.6), we can also employ the Poisson sum formula, equation (3.10), and
integrate λ to obtain

PV (ϑ1, ϑ0) = 1

2π
exp[f (0)ϑ(0) − f (L)ϑ(L)]

+∞∑
m=−∞

exp[−im(ϑ0 − ϑ1)]

× exp

{
−m2lL

4R2
− iml

2R2

∫ L

0
f ds +

l

4R2

∫ L

0
f 2 ds

}
. (5.8)

The probability that the polymer entangles n times can be obtained from equations (5.7)
and (5.8) to yield (setting ϑ0 = ϑ1)

W(n) = Pn/PV

= R

l

√
4π

N

exp
[− R2

Nl2

(
2πn + l

2R2

∫ L

0 f ds
)2]

θ3
(

l
4R2

∫ L

0 f ds
) (5.9)

where θ3(u) is the theta function, equation (4.14), with u = (l/4R2)
∫

f ds, and q =
exp(−Nl2/4R2).

As an example, let us consider the potential V = kϑ (k is constant), which could be
obtained from V = ḟ (s)ϑ , if we let f = ks. In this case, the probability for n entanglements,
equation (5.9), becomes

W(n) = R

l

√
4π

N

exp
[− R2

Nl2

(
2πn + kL2l

4R2

)2]
1 + 2

∑+∞
m=−∞ exp(−m2Nl2/4R2) cos(mkL2l/4R2)

. (5.10)

For a very long macromolecule, L = Nl � 1, the denominator is approximately 1 and we
have

W(n) ≈ R

l

√
4π

N
exp(−4π2n2R2/Nl2) exp[−nkNlπ − (k2N3l4/16R2)]. (5.11)
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For k = 0, we recover the previous result, equation (1.1) or (3.13). The effect of the potential
V = kϑ , as exhibited by the appearance of the second exponential factor in W(n), is to greatly
diminish the probability for higher winding numbers n. This V = kϑ inhibits the coiling of
the polymer on the plane and acts like a stretching potential.

6. Conclusion

Using white noise analysis, we extend the study of two chainlike macromolecules and their
entanglement by considering two types of potential: (a) a magnetic flux confined along the
straight polymer perpendicular to the plane, and (b) a V = ḟ (s)ϑ potential to which the
entangled polymer is subjected on the plane. The probability W(n) for the polymer on
the plane to entangle n times around the straight polymer is calculated for both types of
potential. When the potentials considered are taken to be zero, we obtain the W(n) previously
derived by Wiegel [5].

The case involving a magnetic flux confined along the straight polymer appears to be a
classical analogue of the Aharonov–Bohm effect in quantum mechanics. The entanglement
probability W(n) is influenced by the magnetic flux, even if the entangled polymer lies in a
region where B = 0, and feels no magnetic force. It would be interesting to see whether an
experimental observation of this effect could be realized with the development of insulated
molecular wires made from a conducting linear polymer covered with a molecular nanotube
that acts as an insulator [17].

The potential V = ḟ (s)ϑ , on the other hand, appears to stretch the polymer and leads to a
W(n) which shows a further decrease in the probability for a large winding number n to occur.
This type of stretching potential may be useful in understanding how a long macromolecule,
such as a protein, coils and uncoils as it adopts a stable configuration.
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